Assessment Schedule - 2013 Mathematics and Statistics (Statistics): 91585

Evidence Statement

One	Expected Coverage			Achievement (u)		Merit (r)		Excellence (t)	
(a)(i)		$\underbrace{0.84}_{0.16}$ t) $62=0.7$	plays at least one sport - no sports _ plays at leas one sport no sports (73.4\%)	Probability calculate	rectly				
(ii)	$\mathrm{P}($ Year 9 play no sport $)=0.52 \times 0.16=0.0832$ $\mathrm{P}($ Year 13 play no sport $)=0.48 \times 0.38=0.1824$ OR P (Year 13 \| play no sport) $=\frac{0.48 \times 0.38}{1-0.7344}=0.6867$ This is greater than 0.5 , so the complementary event P (Y9 / play no sports) must be smaller. So the student is more likely to be a Year 13 if play no sports.			Calculation of two relevant probabilities.		Correct conclusion reached as to which is more likely, with sufficient reasoning.			
(b)(i)	Percentage of students who play tennis $=\frac{35}{195}$ $=17.9 \%$			Partially correct Venn diagram is drawn (at least three events correctly shown). OR Consistent probability from incorrect Venn Diagram.		Probability correctly calculated.			
(ii)	Number of students who play netball $=127$$\begin{aligned} & \mathrm{P}(\text { both play netball })=\frac{127}{195} \times \frac{126}{194} \\ & =0.4230(4 \text { d.p. }) \end{aligned}$			Probability that one student plays netball consistent from Venn Diagram.		Incorrect probability for sampling with replacement consistent from Venn Diagram eg: P (both play netball) $\begin{gathered} =\frac{27}{195} \times \frac{127}{195} \\ =0.4242 \end{gathered}$		Probability correctly calculated.	
N ϕ		N2	A3	A4	M5	M6	E7		E8
No relevant evidence.		1 of u	2 of u	3 of u	1 of r	2 of r	1 of t with minor error		1 of t

$\mathrm{N} \phi$	N 1	N 2	A 3	A 4	M 5	M 6	E 7	E8
No relevant evidence.	Making progress.	1 of u	2 of u	3 of u	1 ofr	2 ofr	1 of t with minor error	1 of t

Achievement	Achievement with Merit	Achievement with Excellence
Apply probability concepts in solving problems involves: - selecting and using methods - demonstrating knowledge of concepts and terms - communicating using appropriate representations.	Apply probability concepts, using relational thinking, in solving problems involves: - selecting and carrying out a logical sequence of steps - connecting different concepts or representations - demonstrating understanding of concepts and also relating findings to a context or communicating thinking using appropriate statements.	Apply probability concepts, using extended abstract thinking, in solving problems involves: - devising a strategy to investigate or solve a problem - identifying relevant concepts in context - developing a chain of logical reasoning - making a statistical generalisation and also where appropriate, using contextual knowledge to reflect on the answer.

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	$0-7$	$8-12$	$13-18$	$19-24$

